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Who am I?

● Jiří Svoboda
● Joined HelenOS in 2008 (master thesis)
● Day job: Sustaining Engineer
● Works on HelenOS in spare time
● Areas: debugging framework, input stack, block 

drivers, device driver framework, console, 
applications, networking
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Drivers Available in HelenOS

● USB: UHCI, OHCI, HID, mass storage
● Network: Intel PRO/1000, NE2000, RTL8139
● ATA/PI disk / CD-ROM
● Legacy I/O (PS/2, CUDA, ...)
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Agenda

● Driver requirements
● Programmed I/O and DMA in user space
● Level interrupts, tasklets
● Cooperation of user-space and kernel drivers
● DDF and Device Manager
● Exposing driver services, Location Service
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Driver Requirements

● CPU architecture independence
● Platform independence
● Compositionality
● Automatic enumeration
● Hot-plug and unplug
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Programmed I/O

● Kernel does not have to be in I/O path
● Memory-mapped

– simply map into task address space
● Separate I/O space (ia32 & amd64)

– I/O Permission Bitmap (part of TSS)
– Lazy loading, in similar fashion to FPU context

● Endianness
● host2uint{8|16|32}_t_{l|b}e()
● uint{8|16|32}_t_{b|l}e2host()

● Modeling registers with C structs & unions
● Beware __attribute__((packed))
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Programmed I/O

● #include <ddi.h>
● pio_enable(void *pio_addr, size_t size, void 

**use_addr)
● physmem_map(void *pa, void *va, unsigned 

long pages, int flags)
● uint{8|16|32}_t pio_read(ioport{8|16|32}_t)
● pio_write_{8|16|32}(ioport{8|16|32}_t *port, 

uint{8|16|32}_t val)
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DMA

● First-party: Allocate and map physical memory
● physically contiguous
● constraints (address width, alignment)
● need support in physical memory allocator
● mapped to driver address space
● device programmed in device-specific manner

● int dmamem_map_anonymous(size_t size, 
unsigned int map_flags, unsigned int flags, void 
**phys, void **virt)
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DMA

● Third party: DMA controller (in addition)
● allocate DMA channel
● program DMA channel (physical address, length) 
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Interrupt Handling

● Interrupt = (part of) mechanism to deliver signal 
(event) from device to device driver

● Could potentially transit several 
buses/controllers
● each could affect interrupt number
● each may require some setup, clearing, etc.

● Kernel delivers to user space in form of IPC 
message

● Problems
● Level interrupts, Shared interrupts
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Interrupt Handling

● int register_irq(int inr, int devno, int method, 
irq_code_t *ucode)

● int unregister_irq(int inr, int devno)
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Tasklets

● Solution to problem of level interrupts
● Computational core provided by driver
● Interpreted language (simple instruction code)

● Input/Output
● Bit test
● Predicate
● Claim interrupt

● Executed in interrupt context
● Limited comp. strength (no backward jumps)
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Tasklets

static irq_cmd_t i8042_cmds[] = {

        {

                .cmd = CMD_PIO_READ_8,

                .addr = NULL,   /* will be patched in run-time */

                .dstarg = 1

        },

        {

                .cmd = CMD_BTEST,

                .value = i8042_OUTPUT_FULL,

                .srcarg = 1,

                .dstarg = 3

        },

        {

                .cmd = CMD_PREDICATE,

                .value = 2,

                .srcarg = 3

        },

        {

                .cmd = CMD_ACCEPT

        }

};

static irq_code_t i8042_code = {
        sizeof(i8042_cmds) / sizeof(irq_cmd_t),
        i8042_cmds
};
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Device Handover

● Kernel has some simple drivers
● Frame buffer, keyboard/serial console, interrupt 

controller
● For historical and debugging purposes

● Need handover between kernel and u. space
● during boot when user-space console comes up
● when switching to kernel console and back
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Device Handoff

● hash_table_t irq_kernel_hash_table
● hash_table_t irq_uspace_hash_table

● irq_dispatch_and_lock()

● input_yield()
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DDF/Device Manager

● libdrv – interface for driver
● Driver implements entry points
● Driver calls DDF functions
● Enumeration
● Automatic driver start
● Hot plug and unplug
● Command-line administration (devctl)
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Device Model

● Cosmetic modification of classical device tree

● Split node into device and function
● Driver instance attaches to a device
● Driver instance provides one or more functions

● Functions are inner or exposed
● Inner function – for attaching child drivers
● Exposed function – served to external clients
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Device Model

device node

device

function

minor node
service
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DDF/Device Manager

Driver entry points
● int (*dev_add)(ddf_dev_t *dev)
● int (*dev_remove)(ddf_dev_t *dev)
● int (*fun_online)(ddf_fun_t *fun)
● int (*fun_offline)(ddf_fun_t *fun)
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DDF/Device Manager

DDF functions
● ddf_fun_{create|destroy}()

● driver provides hooks to handle incoming requests

● ddf_fun_{bind|unbind}()
● ddf_fun_add_match_id()
● ddf_fun_add_to_
● ddf_fun_{online|offline}()
● Connect to parent device
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Device Life Cycle

● Transition = driver entry point called

Ready* †

dev_add dev_remove

dev_gone
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Function Life Cycle

● Transition = driver calls DDF

Not Bound

On Line

Off Line

*
†

Create

Destroy

Bind

Unbind

Offline

Online

Unbind

Allocate Soft State
Set Request Handler

...
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Hot plug and unplug

● Hot addition – no special support
● simply later call to dev_add()

● Hot removal
● surprise removal

– communication with device is lost
– dev_remove()

● administrative removal
– dev_offline()
– non-forced – fail when there are clients
– forced – disconnect clients
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Exposing Driver Services

Location Service
● Inspired by CORBA paper
● Any task (server) registers any number of 

services
● Service must be registered with a unique string 

name
● Service is assigned a numerical ID (service ID)
● A service can be added to one or more 

categories
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Exposing Driver Services

● Clients find services by name or category
● Can register for notifications when contents of a 

category change
● Example: Input server listens for and opens any 

device in category 'kbd'
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Exposing Driver Services

● DDF exports a device function as a service via 
LS (name is based on path in device tree)

● Non-DDF driver exports a service via LS
● Both can implement the same IPC interface

● Client looks for a service implementing an IPC 
interface

● Client knows nothing about the implementation
● Pseudo-drivers (e.g. file_bd) not in DDF
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Q&A

Questions?
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Thank You!

http://www.helenos.org/
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