
 1

Dive into HelenOS Device Drivers
Jiří Svoboda

 2

Who am I?

● Jiří Svoboda
● Joined HelenOS in 2008 (master thesis)
● Day job: Sustaining Engineer
● Works on HelenOS in spare time
● Areas: debugging framework, input stack, block

drivers, device driver framework, console,
applications, networking

 3

Drivers Available in HelenOS

● USB: UHCI, OHCI, HID, mass storage
● Network: Intel PRO/1000, NE2000, RTL8139
● ATA/PI disk / CD-ROM
● Legacy I/O (PS/2, CUDA, ...)

 4

Agenda

● Driver requirements
● Programmed I/O and DMA in user space
● Level interrupts, tasklets
● Cooperation of user-space and kernel drivers
● DDF and Device Manager
● Exposing driver services, Location Service

 5

Driver Requirements

● CPU architecture independence
● Platform independence
● Compositionality
● Automatic enumeration
● Hot-plug and unplug

 6

Programmed I/O

● Kernel does not have to be in I/O path
● Memory-mapped

– simply map into task address space
● Separate I/O space (ia32 & amd64)

– I/O Permission Bitmap (part of TSS)
– Lazy loading, in similar fashion to FPU context

● Endianness
● host2uint{8|16|32}_t_{l|b}e()
● uint{8|16|32}_t_{b|l}e2host()

● Modeling registers with C structs & unions
● Beware __attribute__((packed))

 7

Programmed I/O

● #include <ddi.h>
● pio_enable(void *pio_addr, size_t size, void

**use_addr)
● physmem_map(void *pa, void *va, unsigned

long pages, int flags)
● uint{8|16|32}_t pio_read(ioport{8|16|32}_t)
● pio_write_{8|16|32}(ioport{8|16|32}_t *port,

uint{8|16|32}_t val)

 8

DMA

● First-party: Allocate and map physical memory
● physically contiguous
● constraints (address width, alignment)
● need support in physical memory allocator
● mapped to driver address space
● device programmed in device-specific manner

● int dmamem_map_anonymous(size_t size,
unsigned int map_flags, unsigned int flags, void
**phys, void **virt)

 9

DMA

● Third party: DMA controller (in addition)
● allocate DMA channel
● program DMA channel (physical address, length)

 10

Interrupt Handling

● Interrupt = (part of) mechanism to deliver signal
(event) from device to device driver

● Could potentially transit several
buses/controllers
● each could affect interrupt number
● each may require some setup, clearing, etc.

● Kernel delivers to user space in form of IPC
message

● Problems
● Level interrupts, Shared interrupts

 11

Interrupt Handling

● int register_irq(int inr, int devno, int method,
irq_code_t *ucode)

● int unregister_irq(int inr, int devno)

 12

Tasklets

● Solution to problem of level interrupts
● Computational core provided by driver
● Interpreted language (simple instruction code)

● Input/Output
● Bit test
● Predicate
● Claim interrupt

● Executed in interrupt context
● Limited comp. strength (no backward jumps)

 13

Tasklets

static irq_cmd_t i8042_cmds[] = {

 {

 .cmd = CMD_PIO_READ_8,

 .addr = NULL, /* will be patched in run-time */

 .dstarg = 1

 },

 {

 .cmd = CMD_BTEST,

 .value = i8042_OUTPUT_FULL,

 .srcarg = 1,

 .dstarg = 3

 },

 {

 .cmd = CMD_PREDICATE,

 .value = 2,

 .srcarg = 3

 },

 {

 .cmd = CMD_ACCEPT

 }

};

static irq_code_t i8042_code = {
 sizeof(i8042_cmds) / sizeof(irq_cmd_t),
 i8042_cmds
};

 14

Device Handover

● Kernel has some simple drivers
● Frame buffer, keyboard/serial console, interrupt

controller
● For historical and debugging purposes

● Need handover between kernel and u. space
● during boot when user-space console comes up
● when switching to kernel console and back

 15

Device Handoff

● hash_table_t irq_kernel_hash_table
● hash_table_t irq_uspace_hash_table

● irq_dispatch_and_lock()

● input_yield()

 16

DDF/Device Manager

● libdrv – interface for driver
● Driver implements entry points
● Driver calls DDF functions
● Enumeration
● Automatic driver start
● Hot plug and unplug
● Command-line administration (devctl)

 17

Device Model

● Cosmetic modification of classical device tree

● Split node into device and function
● Driver instance attaches to a device
● Driver instance provides one or more functions

● Functions are inner or exposed
● Inner function – for attaching child drivers
● Exposed function – served to external clients

 18

Device Model

device node

device

function

minor node
service

 19

DDF/Device Manager

Driver entry points
● int (*dev_add)(ddf_dev_t *dev)
● int (*dev_remove)(ddf_dev_t *dev)
● int (*fun_online)(ddf_fun_t *fun)
● int (*fun_offline)(ddf_fun_t *fun)

 20

DDF/Device Manager

DDF functions
● ddf_fun_{create|destroy}()

● driver provides hooks to handle incoming requests

● ddf_fun_{bind|unbind}()
● ddf_fun_add_match_id()
● ddf_fun_add_to_
● ddf_fun_{online|offline}()
● Connect to parent device

 21

Device Life Cycle

● Transition = driver entry point called

Ready* †

dev_add dev_remove

dev_gone

 22

Function Life Cycle

● Transition = driver calls DDF

Not Bound

On Line

Off Line

*
†

Create

Destroy

Bind

Unbind

Offline

Online

Unbind

Allocate Soft State
Set Request Handler

...

 23

Hot plug and unplug

● Hot addition – no special support
● simply later call to dev_add()

● Hot removal
● surprise removal

– communication with device is lost
– dev_remove()

● administrative removal
– dev_offline()
– non-forced – fail when there are clients
– forced – disconnect clients

 24

Exposing Driver Services

Location Service
● Inspired by CORBA paper
● Any task (server) registers any number of

services
● Service must be registered with a unique string

name
● Service is assigned a numerical ID (service ID)
● A service can be added to one or more

categories

 25

Exposing Driver Services

● Clients find services by name or category
● Can register for notifications when contents of a

category change
● Example: Input server listens for and opens any

device in category 'kbd'

 26

Exposing Driver Services

● DDF exports a device function as a service via
LS (name is based on path in device tree)

● Non-DDF driver exports a service via LS
● Both can implement the same IPC interface

● Client looks for a service implementing an IPC
interface

● Client knows nothing about the implementation
● Pseudo-drivers (e.g. file_bd) not in DDF

 27

Q&A

Questions?

 28

Thank You!

http://www.helenos.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

