
Martin Děcký

decky@d3s.mff.cuni.cz

http://d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

The Microkernel
Overhead

The Microkernel
Overhead

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 2

Why am I Here?Why am I Here?

HelenOS developer since 2005

Computer science researcher

Distributed and component systems

Formal verification of OS correctness

Monolithic and microkernel OSes have both
their pros and cons

The microkernel overhead is a particular source of
many misconceptions

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 3

DisclaimerDisclaimer

For the sake of brevity, some of the following
slides might be oversimplified.

When making important decisions, always consult
the original references, rely on your own
observations and draw your own conclusions.

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 4

The Overhead?The Overhead?

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 5

The Overhead?The Overhead?

Fact

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 6

The Overhead?The Overhead?

Fact

Hi
st

or
y

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 7

The Overhead?The Overhead?

Fact

Superstition
Hi

st
or

y

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 8

The Overhead?The Overhead?

Fact

Superstition
Hi

st
or

y

Be
ne

fit

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 9

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 10

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 11

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

upcall

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 12

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

upcall

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 13

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

upcall

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 14

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

upcall

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 15

Microkernel Overhead as a FactMicrokernel Overhead as a Fact

application

kernel

VFS

ext2

device driver

disk

application

kernel

user space
kernel
hardware
syscall
function call
I/O

Monolithic kernel

IPC

Microkernel

VFS

ext2

upcall

device driver

disk

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 16

Microkernel Overhead as a Fact (2)Microkernel Overhead as a Fact (2)

Natural reasons for the microkernel overhead

More communication barriers
Function call → Upcall + Syscall

Synchronous execution → Context switch

Heavier operations
Jump → Mode switch

Argument passing → Argument queuing

→ Scheduler execution

What is the actual extent of the overhead?

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 17

Microkernel Overhead in HistoryMicrokernel Overhead in History

Benchmarks of Mach 3.0 (1997)

Single-server Mach vs. UNIX slowdown: 1.5
73 % of the slowdown due to IPC overhead

80 % of the IPC overhead due to access rights and message
validity checking

Communication barriers are unavoidable
It is the very cornerstone of microkernel design

Not accountable for more than a 3 higher overhead
(not 3 higher slowdown)

The problem are the heavy operations

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 18

Microkernel Overhead in History (2)Microkernel Overhead in History (2)

Mach asynchronous IPC

task 1

kernel

capability list
task 1

capability list
task 2

port

send right

task 2

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 19

Microkernel Overhead in History (3)Microkernel Overhead in History (3)

Mach asynchronous IPC

Complex access rights evaluation in the kernel

Complicated queuing in the kernel
Simple data structures (linked lists)

Excessive cache footprint

Sequential programming paradigm
IPC used mostly in synchronous manner

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 20

Microkernel Overhead in History (4)Microkernel Overhead in History (4)

Benchmarks of L4 (1997)

Single-server L4 vs. UNIX slowdown: 1.03
Single IPC call overhead comparable to single UNIX
syscall overhead

20 faster than on Mach

The slowdown caused only by the communication
barriers

Even the overhead of a multiserver variant expected to
be rather reasonable

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 21

Microkernel Overhead in History (5)Microkernel Overhead in History (5)

L4 synchronous IPC

Explicit client/server rendez-vous
No need for full context switch

Data passed directly in registers and in shared memory
No rescheduling, no queuing

Highly optimized implementation
Small working set

Better spatial locality, cache friendly

Leaving the access right policies to the user space
servers

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 22

Microkernel Overhead SuperstitionMicrokernel Overhead Superstition

Mach 3.0 is a (too) well-known failed example

First-generation archetypal microkernel

Establishing the terminology, etc.

Part of university curricula all over the world

Never practically used as a microkernel with user
space drivers

XNU: Single-server microkernel with kernel drivers

Hurd: Multiserver microkernel with kernel drivers

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 23

Microkernel Overhead Superstition (2)Microkernel Overhead Superstition (2)

Opinion of the general public

Tanenbaum-Torvalds debate (1992)
Performance of microkernels mentioned several times

Hybrid design of Windows NT
Kernel space device drivers

Microkernel modularity, but a single address space

“Microkernels are just research toys”

“Real-life performance demands monolithic kernels”

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 24

Real-life Performance?Real-life Performance?

Let's consider a theoretical 1.5 slowdown

A 50 % faster CPU required to compensate

In 1996
Intel Pentium @ 133 MHz $300

Intel Pentium @ 200 MHz $599

In 2012
Intel Xeon X5650 @ 2.67 GHz $1004

Intel Xeon X5690 @ 3.47 GHz $1660

2

1.66

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 25

Real-life Performance? (2)Real-life Performance? (2)

The microkernel trade-off

Run-time performance
We have to pay more to compensate for the overhead

vs.

Run-time reliability
We have to pay less because of improved reliability

Fault isolation, restarting of faulty services
Formal verification

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 26

Microkernel Overhead as a BenefitMicrokernel Overhead as a Benefit

When can an overhead be of any benefit?

Technically: Never

Paradigm shift
Plain function calls optimized and unbeatable for
sequential code performance

What if sequential code execution cannot utilize the
hardware effectively?

Multicore (many-core) architectures

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 27

Microkernel Overhead as a Benefit (2)Microkernel Overhead as a Benefit (2)

Parallel algorithms

Manual decomposition into work queues
Fork-join

Parallel programming abstractions
Actors, agents, dataflow concurrency, continuations

Future objects, promises

Implementation level
Similar to asynchronous IPC and multiserver design

Sequential overhead, but improved throughout

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 28

Microkernel Overhead as a Benefit (3)Microkernel Overhead as a Benefit (3)

HelenOS asynchronous IPC

Elimination of unnecessary context switches
Cooperative scheduling in user space

Elimination of data copying
Shared memory between communicating tasks

Kernel queuing with reasonable performance
Smart concurrent data structures (hash tables, B+ trees)

No complex access rights, small code footprint

Asynchronous nature suitable for parallel processing
Non-blocking operations

Concepts of future objects and promises

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 29

Open ChallengesOpen Challenges

Benefits of monolithic systems

Easier global prediction of resource usage patterns
I/O caches and buffers

Across various subsystems (block layer, filesystem layer,
directory layer, etc.)
Read-ahead heuristics

Simpler reaction to resource pressure conditions
Mild vs. aggressive cache flushing, graceful degradation

Easier scheduler interaction
Priority boosting for interactive tasks, etc.

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 30

Open Challenges (2)Open Challenges (2)

Resources in microkernel multiserver systems
Implicitly shared resources (and their state)
scattered among isolated servers

No central point for caching, future usage prediction
(read-ahead), resource pressure evaluation (out-of-
memory)

Possible solutions
Polymorphic caching server
Distributed shared resource management

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 31

ConclusionConclusion

The microkernel overhead is a fact

Inherent property of the microkernel design

A price paid for the improved reliability & design

The way the microkernel is implemented
dramatically affects the extent of the overhead

From two-fold or worse slowdown to only several
percents

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 32

Conclusion (2)Conclusion (2)

Clever asynchronous IPC can provide adequate
throughput on multicore systems

Non-blocking, non-sequential programming

Parallel processing of requests

The resulting trade-off

Cost of hardware vs. Cost of reliability

Still challenges to be solved

Transparent shared resources management

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 33

Q&A

Martin Děcký, FOSDEM 2012, 5th February 2012 The Microkernel Overhead 34

ReferencesReferences

Jochen Liedtke: Improving IPC by Kernel Design

Jochen Liedtke: On μ-Kernel Construction

Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, Jean Wolter: The Performance of μ-
Kernel-Based Systems

Jan Stoess: Towards Effective User-Controlled Scheduling for
Microkernel-Based Systems

Sebastian Ottlik: Reducing Overhead in Microkernel Based
Multiserver Operating Systems through Register Banks

