MultiPath TCP : Linux Kernel Implementation

Presenter: Christoph Paasch
IP Networking Lab
Université catholique de Louvain

February 3, 2012

http://mptcp.info.ucl.ac.be
Current situation

- Mobile devices can connect to the Internet via different interfaces
 - 3G
 - WiFi

- Data-centers have a large redundant infrastructure
TCP is used for 95% of the Internet communications
TCP is used for 95% of the Internet communications

TCP identifies connections by the 5-tuple
Current situation

- TCP is used for 95% of the Internet communications
- TCP identifies connections by the 5-tuple

A single TCP connection cannot be used across different interfaces.
Mobile devices should connect to the Internet by using all their interfaces.

Data-centers should use their redundant infrastructure in the most efficient way.

Dual-Homed Servers
MultiPath TCP (short MPTCP)

- MPTCP allows a single data-connection to use several interfaces simultaneously.
- Allows failover from one interface to another (e.g., mobile client).
- Increases the bandwidth due to resource pooling.
- Better load-balancing due to fair coupled congestion control.
Linux Kernel MultiPath TCP

- About 10000 lines of code in the Linux Kernel
- Lots of performance evaluation in different research-papers.
- **Live-Demo** of MPTCP at the end of this presentation.
- Implementation freely available at http://mptcp.info.ucl.ac.be
MultiPath TCP - The Protocol

Application Layer

standard Socket API

Transport Layer

MultiPath TCP

TCP subflow
TCP subflow
TCP subflow

Network Layer

WiFi
3G
Wired

Presenter: Christoph Paasch - IP Networking Lab
http://mptcp.info.ucl.ac.be
Establishing a connection

Application Layer

standard Socket API

Transport Layer

Connection Establishment
Is the Peer MPTCP-Capable?

Network Layer

TCP subflow

Master subsocket
Establishing a connection

MultiPath TCP - The Implementation

- **Application Layer**: standard Socket API
- **Transport Layer**: MultiPath TCP
- **Network Layer**: Creating new subflows

Master subsocket
- TCP subflow

Slave subsocket
- TCP subflow
- TCP subflow
Sending packets over MultiPath TCP
Receiving packets over MultiPath TCP

![Diagram of MultiPath TCP implementation]

- **Application Layer**: standard Socket API
- **Transport Layer**: Meta-socket, MultiPath TCP
 - **Meta-socket**:
 - send-queue
 - **MultiPath TCP**:
 - receive-queue
 - ofo-queue
- **Network Layer**:
 - **Master subsocket**
 - TCP subflow
 - ofo-queue
 - **Slave subsocket**
 - TCP subflow
 - ofo-queue
 - **Slave subsocket**
 - TCP subflow
 - ofo-queue

Presenter: Christoph Paasch - IP Networking Lab
Webpage: http://mptcp.info.ucl.ac.be
Interconnected testbed with two separate paths at 1Gbps
MultiPath TCP - Performance Results

- Interconnected testbed with two separate paths at 1Gbps
- regular TCP can only use one single path

![Diagram showing MultiPath TCP and regular TCP with transfer size and ratio of requests per second]
Interconnected testbed with two separate paths at 1Gbps
regular TCP can only use one single path
MultiPath TCP uses both paths simultaneously
MultiPath TCP - Performance Results

- Interconnected testbed with two separate paths at 1Gbps
- regular TCP can only use one single paths
- MultiPath TCP uses both paths simultaneously

![Diagram showing performance results of MultiPath TCP vs. regular TCP](image-url)
Use it!!!

- Compile the source yourself
- or Install from our apt-repository
- or Set it up on a virtualbox-image
- or Use it with user-mode-linux

Contribute

- Integrate some missing features
- Optimize the code
- Refactoring the code
- Testing
Live-Demo!!!

FOSDEM
WiFi
3G
MPTCP
MPTCP-Proxy
http://mptcp.info.ucl.ac.be
Public Webradio

regular TCP
http://mptcp.info.ucl.ac.be
Download MPTCP, try it out, ask questions on the mptcp-dev list and contribute.

Thanks!!!