Implementing Domain-Specific Languages with
LLVM

David Chisnall

February 5, 2012

What are Domain-Specific Languages?

@ UNIX bc / dc

e Graphviz
e JavaScript

AppleScript / Visual Basic for Applications
Firewall filter rules
EMACS Lisp

Some are also general-purpose programming languages.

Author's Note
Comment
DSLs crop up in all sorts of places. EMACS and web browsers show us that any tool evolves until it contains a complete development environment, at which point it is replaced by a metaprogrammed version of itself. Quite often DSLs are just used for scripting other things, so initially performance is not considered when implementing them. After users start implementing complex things in them, performance becomes more important.

What is LLVM?

@ A set of libraries for implementing compilers
e Intermediate representation (LLVM IR) for optimisation

e Various helper libraries

Author's Note
Comment
LLVM (which doesn't stand for anything anymore) is lego for compiler writers. There are lots of tools (yacc, ANTLR, OMeta and so on) for building parsers - LLVM is a set of tools for building the back end parts.

How Do | Use LLVM?

Generate LLVM IR from your language

Link to some helper functions written in C and compiled to
LLVM IR with clang

Run optimisers

Emit code: object code files, assembly, or machine code in
memory (JIT)

Author's Note
Comment
If you have an existing interpreter, then the easiest thing to do is take the individual interpreter steps and compile them with clang to LLVM IR. Then your code generator just needs to generate calls to these functions. The LLVM optimisers will inline them and you end up with native code for your language with very little effort.

A Typical DSL Implementation

Clang

LLVM Optimiser ‘EXecutable

LLVM Linker —— Native Linker

LLVM Optimiser 3

A
Parcer - AST sThterpreter.

Author's Note
Comment
Starting with an interpreter, the first thing that you need to do is generate LLVM IR from your AST or bytecode. This can easily call C functions, so you can make a quick-and-dirty compiler very quickly. For better performance, you can make these functions available to the LLVM optimisers. One of the nicest features of LLVM is that you can also statically compile, just as easily as you can JIT compile. This means that if you have some scripts that everyone uses, you can compile them ahead of time and ship them linked into your binary.

What Is LLVM IR?

@ Unlimited Single-Assignment Register machine instruction set
e Three common representations:

e Human-readable LLVM assembly (.II files)
e Dense ‘bitcode’ binary representation (.bc files)
o C++ classes

Author's Note
Comment
The bitcode format is only used for communicating between LLVM tools. You can generate either the assembly or construct the C++ objects directly. It's usually better to use the C++, but if you're writing a prototype in a scripting language that makes text manipulation easy then you may consider the assembly.

The Structure of an LLVM Compilation Unit

@ Compilation units are LLVM Modules, each one contains one
or more...

e Functions, each of which contains one or more...
e Basic Blocks, each of which contains one or more...

e Instructions

Author's Note
Comment
LLVM IR is hierarchically structured and is somewhere between C and an assembly language in terms of layout.

LLVM Instructions

@ alloca allocates space on the stack
e add and so on: arithmetic instructions
e jeq, jne, ret flow control
e call, invoke structured flow control

e LLVM also provides some intrinsic functions for things like
atomic operations

Author's Note
Comment
At the lowest level, you have LLVM instructions. These mostly correspond to machine instructions, but are slightly abstracted to be portable. For example, LLVM has an alloca instruction rather than requiring explicit stack pointer manipulation. It also has call and invoke instructions for calling functions and, in the latter case, for generating unwind tables for exception handling.

Instructions are Values

@ LLVM uses an infinite SSA register set
e The result of (almost) every instruction is a register

e These can be operands to other instructions

Author's Note
Comment
The LLVM abstract architecture is an unlimited register machine. Every instruction (that results in a value) implicitly stores this in a new register. When you create an instruction with the C++ APIs, this register is implicitly created and you can use the resulting object (a subclass of llvm::Value) anywhere that expects a value.

Basic Blocks

@ Start with (zero or more) phi instructions
e End with a flow control instruction (terminator)

e No flow control inside a basic block

Author's Note
Comment
Basic blocks are sequences of instructions with no flow control inside them. This makes them useful for certain kinds of optimisation. Because LLVM is in SSA form, basic blocks may start with PHI nodes. These are special placeholders that take different values depending on which basic block is the predecessor.

Functions

@ Start with an entry basic block.
e All locals should be allocas in the entry block.

e Must end (if it terminates) with a ret instruction

Author's Note
Comment
Functions start with an entry basic block. Typically you will have one alloca instruction for each local variable in this basic block. The mem2reg pass will then turn stores and loads of these allocas into registers, generating SSA form for you.

Hello World in LLVM

@.str=private constant [12 x i8] c"hello world
\0O"
@.strl=private constant [9 x i8] c"hello ¥%s\00O"
define 132 @main(i32 %argc, i8*x* Yargv) {
%1 = icmp eq 132 Yargc, 1
br i1 %1, label Y%world, label Y%name
world:
%2 = getelementptr [12 x i8]% @.str, i64 O,
i64 0
call void @puts (i8%* %2)
ret i32 0
name :
%3 = getelementptr inbounds i8%** Yargv, i64 1
%4 = load i8x** %3, align 8
%5 = getelementptr [9 x i8] @.strl, i64 O,
i64 0
call void (i8%*, ...)* @printf (i8* %5, i8% %4)
ret 132 0

LLVM Types

@ LLVM is strongly typed

Types are structural (e.g. 8-bit integer - signed and unsigned
are properties of operations, not typed)

Arrays of different length are different types
Pointers and integers are different

Structures with the same layout are different if they have
different names (new in LLVM 3.)

Various casts to translate between them

Author's Note
Comment
LLVM requires explicit casts for transforming types. LLVM types are structural - there is no unsigned or signed integer type, operations are signed or unsigned but the types are not. Two anonymous structures with the same layout are considered the same type, but two named structures with different types are not (for type-base antialiasing).

A Worked Example

@ source code:

http://cs.swan.ac.uk/~csdavec/FOSDEM12/examples.tbz2
Compiler source file:
http://cs.swan.ac.uk/~csdavec/FOSDEM12/compiler.cc.html

Author's Note
Comment
The rest of this talk will cover a worked example, turning a toy interpreter into a toy compiler.

http://cs.swan.ac.uk/~csdavec/FOSDEM12/examples.tbz2
http://cs.swan.ac.uk/~csdavec/FOSDEM12/compiler.cc.html

A Simple DSL

@ Simple language for implementing cellular automata

e Programs run on every cell in a grid

Lots of compromises to make it easy to implement!

10 per-instance accumulator registers (a0-a9)

10 shared registers (g0-g9)

Current cell value register (v)

Author's Note
Comment
This language makes a lot of compromises to make it easier to parse - this talk is about code generation, not about parsing, so the grammar is intentionally simple.

Arithmetic Statements

@perator} {register} {expression}

e Arithmetic operations are statements - no operator
precedence.

Author's Note
Comment
For simplicity in parsing, arithmetic statements start with their operator and are not expressions. Making them expressions would not make the code generator much more complex, but would make the grammar much more complex.

Neighbours Statements

neigbours ({statements})

e Only flow control construct in the language

e Executes the statements once for every neighbour of the
current cell

Author's Note
Comment
If this is run on a corner, it will execute 3 times. If it's run on an edge, it will execute 5 times. If it's run anywhere else, it will execute 8 times. The value of the neighbour cell is stored in a0.

Select Expressions

ETLegister} |

{value or range) => {expression},
{value or range) => {expression}...

e Maps a value in a register to another value selected from a
range

e Unlisted ranges are implicitly mapped to 0

Author's Note
Comment
This is the only conditional execution in the language. It maps a value in a register to another value, depending on the range of the current value. This is like a C switch statement, but is an expression not a statement (i.e. it evaluates to something).

Examples

Flash every cell:
=v[v]|]0=>1]
Count the neighbours:

neighbours (+ al 1)
= v al

Connway's Game of Life:

neighbours (+ al a0)

=v [v |
0=>[al | 3=>1],
1=>1[al | (2,3) => 1]

AST Representation

e Nodes with two children

o Registers and literals encoded into pointers with low bit set

Implementing the Compiler

@ One C++4 file

e Uses several LLVM classes

e Some parts written in C and compiled to LLVM IR with clang

Author's Note
Comment
Once the interpreter was done and working, writing and testing the compiler was very quick. For a toy language like this, it's easy to write a compiler in an afternoon.

The Most Important LLVM Classes

@ Module - A compilation unit.
e Function - Can you guess?
e BasicBlock - a basic block
e GlobalVariable (Il hope it's obvious)
e TRBuilder - a helper for creating IR
e Type - superclass for all LLVM concrete types
e ConstantExpr - superclass for all constant expressions
e PassManagerBuilder - Constructs optimisation passes to run

e ExecutionEngine - The thing that drives the JIT

Author's Note
Comment
These are the classes that you will spend most of your time working with. LLVM is huge, but the subset that people writing front ends need to care about is pretty small.

The Runtime Library

#E;Ed automaton(intl16_t *oldgrid, intl6_t =*
newgrid, intl6_t width, intl6_t

height) {
int16_t gl[10] = {0};
intl6_t i=0;

for (intl16_t x=0 ; x<width ; x++) {

for (intl16_t y=0 ; y<height ; y++,i++) {
= cell(oldgrid, newgrid, width,

newgrid[i] =
height, x, y, oldgrid[il, g);

}

\S

Generate LLVM bitcode that we can link into our language:

$ clang -c -emit-1llvm runtime.c -o runtime.bc -00

Author's Note
Comment
It's common to call into things written in C for interpreters, so for this language I thought I'd do it the other way around. The code that we generate will be called by this function (we will implement cell()) once for each cell in the grid. Because we compile this to LLVM IR, our code will be inlined into it.

Setup

#E;ﬁLoad the runtime module

OwningPtr <MemoryBuffer> buffer;
MemoryBuffer::getFile("runtime.bc"”, buffer);
Mod = ParseBitcodeFile(buffer.get(), C);
// Get the stub function
F = Mod->getFunction("cell");
// Stop exporting it
F->setLinkage (GlobalValue::PrivateLinkage) ;
// Set up the first basic block
BasicBlock *entry =

BasicBlock::Create(C, "entry", F);
// Create the type used for registers
regTy = Type::getIntl6Ty(C);
// Get the IRBuilder ready to use
B.SetInsertPoint (entry) ;

Author's Note
Comment
This is the basic setup. This constructs an LLVM module (actually by loading a template from disk), and gets a function ready for modifying.

Creating Space for the Registers

@ (int i=0 ; i<10 ; i++) {

al[i]l] = B.CreateAlloca(regTy);
}
B.CreateStore (args++, v);
Value *gArg = args;
for (int i=0 ; i<10 ; i++) {
B.CreateStore (ConstantInt::get(regTy,
DM
gli]l = B.CreateConstGEP1_32(gArg, 1i);
}

=

0,

ali

S

Author's Note
Comment
You'll do something like this to allocate and initialise the locals in any language. Here we do it a fixed number of times, but for other language you'll do this once for each local symbol you have. Don't worry about dead stores - the optimser will fix this for us later.

GEP? WTF? BBQ?

@ GEP is short for GetElementPtr
e Returns a pointer to an element of a structure or array
e Does not dereference the pointer

e Architecture-agnostic representation of complex addressing
modes

Author's Note
Comment
The GetElementPtr instruction is one of the hardest things to understand in LLVM. Many architectures have complex addressing modes so a store to an array or structure element can be a single instruction. LLVM uses the GEP to represent these in a generic manner. The back ends will typically map a GEP plus a load or a store to a single machine instruction.

Compiling Arithmetic Statements

Que xreg = B.Createload(alvall);
Value *result = B.CreateAdd(reg, expr);
B.CreateStore(result, alvall);

e LLVM IR is SSA, but this isn't
e Memory is not part of SSA
e The Mem2Reg pass will fix this for us

Author's Note
Comment
The simple arithmetic operations are trivial. Just load the value, do the operation and store the new value.

Flow Control

@ More complex, requires new basic blocks and PHI nodes
e Range expressions use one block for each range

e Fall through to the next one

Author's Note
Comment
Flow control operations are harder. They require you to create basic blocks and work out the relationship between them.

//

Range Expressions

jgiﬁNode *phi = PHINode::Create(regTy, count, "

result”, cont);

For each range:

Value *min = ConstantInt::get(regTy, minVal);
Value #*max = ConstantInt::get(regTy, maxVal);
match = B.CreateAnd (B.CreateICmpSGE(reg, min),
B.CreateICmpSLE(reg, max));

BasicBlock *expr = BasicBlock::Create(C, "
range_result”, F);

BasicBlock *next = BasicBlock::Create(C, "
range_nezt", F);

B.CreateCondBr (match, expr, next);
B.SetInsertPoint (expr); // (Generate the

expression after this)
phi->addIncoming(val, B.GetInsertBlock());
B.CreateBr (cont) ;

Author's Note
Comment
Each range in a range expression require a comparison to check if we're in the desired range, then two new basic blocks: one for the match case, one for the next check. In the match case, we evaluate the expression and then jump to the continue block. In the continue block, we have a PHI node that contains the result, with a different value depending on which block it came from.

Optimising the IR

#EzjsManagerBuilder PMBuilder;
PMBuilder .OptLevel = optimiselevel;
PMBuilder.Inliner=createFunctionInliningPass
(275) ;
FunctionPassManager *FPM = new
FunctionPassManager (Mod) ;
PMBuilder .populateFunctionPassManager (xFPM) ;
for (Module::iterator I = Mod->begin(),
E = Mod->end() ; I != E ; ++I) {
if (!I->isDeclaration()) FPM->run(%*1I);

}
FPM->doFinalization () ;
PassManager *MP = new PassManager () ;

PMBuilder.populateModulePassManager (¥MP) ;
MP->run (*Mod) ;

Author's Note
Comment
Once you've generated the IR, you almost certainly want to optimise it. When debugging, you can omit this step. The PassManagerBuilder constructs a PassManager, which is responsible for running optimisations. This snippet constructs the default set.

Generating Code

ﬂgzj::string error;

-

ExecutionEngine *EE = ExecutionEngine::create(
Mod, false, &error);
if (VEE) {

fprintf (stderr, "Error:, /s\n", error.c_str());
exit (-1);
}
return (automaton)EE->getPointerToFunction (Mod->
getFunction("automaton")) ;

\S

Now we have a function pointer, just like any other function
pointer!

Author's Note
Comment
Finally, you want to generate the code. This is all that's required to compile the module and get a function pointer that you can call. The ExecutionEngine now owns the Module, so you are not responsible for deleting it. The Module, in turn, owns all of the things that it contains.

Some Statistics

o

Component ‘ Lines of Code

Parser 400
Interpreter 200
Compiler 300

Running 200000 iterations of Connway's Game of Life on a 50x50
grid:

Compiler

Interpreter

Author's Note
Comment
These statistics are from before I added a load of comments to the compiler - it's now far more heavily commented than a real compiler would be (because it's example code that you are supposed to read and understand). The compiler is about 7-8 times faster than the interpreter. The interpreter itself is reasonably fast, so this is fine for a first pass.

Improving Performance

@ Can we improve the IR we generate?
e Can LLVM improve the IR for us?

e Can we improve the overall system?

Author's Note
Comment
Having a toy compiler is a good first step. Now we've done the 'make it work', how do we do the 'make it fast' bit?

Improving the IR

@ Optimsers work best when they have lots of information to
work with.

e Split the inner loop into fixed-size blocks?

e Generate special versions of the program for edges and
corners?

Author's Note
Comment
The more invariants you can put in the IR, the better. You can also add metadata that a custom optimisation could use.

Make Better Use of Optimisations

@ This version uses the default set of LLVM passes
e Try changing the order or explicitly adding others

e Writing new LLVM parses is quite easy - maybe you can write
some specific to your language?

Author's Note
Comment
Rather than using the standard set of passes, take a look at the list of passes on the LLVM web site and see if any others would be more useful. Sometimes just tweaking the order of the standard passes can give a good speedup. The default set is fine for C, but may not be ideal for other languages.

Writing a New Pass

@ Tutorial:

http://1lvm.org/docs/WritingAnLLVMPass.html

ModulePass subclasses modify a whole module

FunctionPass subclasses modify a function

e LoopPass subclasses modify a function

Lots of analysis passes create information your passes can use!

Author's Note
Comment
Another advantage of LLVM's modularity is that it is easy to add new passes. You can easily write passes that take advantage of some extra knowledge from the source language. These can take advantage of LLVM's ability to infer flow control for you, so you don't have to do that at the AST level.

http://llvm.org/docs/WritingAnLLVMPass.html

Example Language-specific Passes

@ Optimisations:

e Part of LLVM

e Elide reference counting operations in Objective-C code when
not required

e Makes heavy use of LLVM's flow control analysis

GNUstep Objective-C runtime optimisations:

e Distributed with the runtime.

e Can be used by clang (Objective-C) or LanguageKit
(Smalltalk)

e Cache method lookups, turn dynamic into static behaviour if
safe

Author's Note
Comment
These are just a few that exist already. The ARC optimisers run after some of the other standard LLVM passes so clang doesn't need to know about flow control - it can insert reference count operations in a naive way and then the optimser will remove redundant ones.

Other Libraries

@ LLVM is not the end, when designing a language

e |t's trivial to call into other libraries with C APIs from
LLVM-generated code.

e libdispatch gives cheap concurrency
e libgc gives garbage collection
e libobjc2 gives a dynamic object model

This language is conceptually parallel - why not use libdispatch to
run 16x16 blocks concurrently?

Author's Note
Comment
Don't think of LLVM as the only tool you have when writing a compiler, especially for high-level languages. The Boehm GC isn't the best garbage collector in the world, but it's often good enough and it is easy to use. libdispatch can give you cheap lightweight concurrency, and you can trivially call its functions from code that you generate with LLVM. The GNUstep Objective-C runtime (libobjc2) is designed to support other dynamic object oriented languages, and we have things like Smalltalk and a dialect of JavaScript that use it.

FFI Aided by Clang

@ libclang allows you to easily parse headers.
e Can get names, type encodings for functions.
e No explicit FFI

e Pragmatic Smalltalk uses this to provide a C alien: messages
sent to C are turned into function calls

Author's Note
Comment
Clang, like LLVM is very modular and you can use it for FFI. I do this in LanguageKit, using clang to parse headers and get the type information for C functions. This allows dynamic language code to call C by just generating an LLVM call instruction and making sure that the arguments have the correct types.

Questions?

