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FOSDEM 2012

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 1 / 71



Outline

1 Intro to CERN

2 Overview of Controls Hardware

3 Standards for New Designs

4 Open Hardware

5 White Rabbit

6 Applications

7 Software for Diverse Equipment

8 Conclusions

9 Questions

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 2 / 71



Find out about what the world is made of...
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. . . and what other worlds might be made of!
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Better microscopes for biologists and other scientists
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Better microscopes for biologists and other scientists
E.g. Mouse brain to study Alzheimer
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Better microscopes for biologists and other scientists
E.g. Nucleosome core
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Fight tumors more effectively
Hadron therapy
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Fight tumors more effectively
Better energy deposition than X-rays and traditional radiotherapy
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A simple synchrotron
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LEP superconducting cavity
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CLIC cavity
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Drift Tube Linac (DTL)
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A simple dipole electromagnet
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LHC cryodipole
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ATLAS on paper
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ATLAS in reality
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ATLAS event example
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CERN Accelerator Complex
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CERN Beams Controls group

Responsible for
Controls infrastructure for all CERN accelerators, transfer lines
and experimental areas
General services such as synchronization and analog signal
acquisition/display
Specification, design, procurement, integration, installation,
commissioning and operation

Supports
beam instrumentation, cryogenics, power converters etc.
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Beams Controls standard kit

Hardware kit
analog and digital I/O
level converters, repeaters
serial links, timing modules

Software
Linux device drivers, C/C++ libraries, test programs
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Bus standards for new designs

Two bus standards
VME64x

6U, large front-panel space, may use rear transition module
PICMG 1.3

Industrial type PC with the processor on a plug-in board
Internal buses PCI Express and PCI

Need for a mezzanine approach
Functions (e.g. ADC, TDC) are needed for both buses
Would need twice as many designs, more if additional standards
are needed (PXIe, xTCA)
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Carriers and mezzanines

Courtesy of VITA: http://www.vita.com/fmc.html
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Advantages of the carrier/mezzanine approach

Re-use
- One mezzanine can be used in VME and PCIe carriers.
- People know standards, more likely to re-use or design for it.

Reactivity
- Carrier: place and route a complex FPGA/Memory PCB once.
- Mezzanine: small and easier to route cards, easy assembly.

Rational split of work
’Controls’ can design the carrier, ’Instrumentation’ an ADC mezzanine,
’RF’ a DDS one, etc.
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Example of a PCI Express FMC carrier (SPEC)
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Example of FMC mezzanine: 100 MSPS 14-bit
4-channel ADC
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VME64x FMC carrier
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Another example of FMC mezzanine: 5-channel 1ns
TDC
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Inside the FPGA: Wishbone

System becomes pretty complex: System-on-a-chip
Build up from re-usable HDL cores
Connect blocks with Wishbone bus

open standard
simple address/data bus
extended with pipelined mode
many cores already available

We developed a design infrastructure
WBGen: scripts to automatically generate Wishbone slave HDL
and documentation
SDWB: IP blocks with descriptors to enable software re-use
HDLMake: support to synthesize and simulate designs with
distributed sources
Etherbone: a bridge between Ethernet and Wishbone (made by
GSI)
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There is an OSHW definition!

Check out http://freedomdefined.org/OSHW
Inspired by the Open Source definition for software.
Focuses on ensuring freedom to study, modify, distribute, make
and sell designs or hardware based on those designs.
Now we know exactly what we mean when we say OSHW!
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Why we use Open Hardware

Peer review
Get your design reviewed by experts all around the world, including
companies!

Design re-use
When it’s Open, people are more likely to re-use it.

Healthier relationship with companies
No vendor-locked situations. Companies selected solely on the basis
of technical excellence, good support and price.

Dissemination of knowledge
One of the core missions of CERN.
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Open Hardware Repository – ohwr.org

A web-based collaborative tool for electronics designers
Wiki, News
File repository
Issues management
Mailing list

Fully open access
All information readable by everyone, without registration

Server made itself of FOSS
ChiliProject (a fork of Redmine)
SVN/GIT for version management, integrated in OHR
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CERN FMC projects in OHR – some examples

FMC Carriers
VME64x, PCIe, AMC, VXS
PXIe in the pipeline

FMC Mezzanines
ADC’s, sampling speeds: 200 kSPS, 100 MSPS
TDC and Fine delay (resolution 1 ns)
Digital I/O: 5 channels, 16 channels

Important: all of these are or will be commercially available.
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The best of both worlds

Commercial Non-commercial

Open

Propietary

Winning combination,
best of both worlds.

Whole support burden
falls on developers.
Not scalable.

Vendor lock-in. ?!
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CERN Open Hardware License – ohwr.org/cernohl

Provides a solid legal basis
Developed with Knowledge Transfer Group at CERN
Inspired by FOSS licences
Focused on both design and products
Persistent as LGPL

Practical: makes it easier to work with others
Upfront clear that anything you give will be available to everyone
Makes it clear that anyone can use it for free
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CERN Open Hardware License – ohwr.org/cernohl

Same principles as FOSS
Anyone can see the source (design documentation)
Anyone is free to study, modify and share
Any modification and distribution under same licence
Persistence makes everyone profit from improvements

Hardware production
When produce: licensee is invited to inform the licensor
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Example of mechanics licenced with the CERN OHL

Worm farm and rotocaster
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Try to use FOSS tools for development

Tools: the last hurdle to sharing
We already have a forge and a licence.
Current proprietary CAD tools make it hard to share designs.

Current efforts
Icarus verilog: help in adding VHDL and SystemVerilog support.
See http://iverilog.icarus.com/
Kicad: help bring it on par with proprietary tools in terms of
features and quality. See
http://www.ohwr.org/projects/ohr-meta/wiki/Foss-pcb.
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What is White Rabbit?
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What is White Rabbit?

An extension to Ethernet which provides:
Synchronous mode (Sync-E) - common clock for physical layer
in entire network, allowing for precise time and frequency transfer.
Deterministic routing latency - a guarantee that frame
transmission delay between two stations will never exceed a
certain boundary.

A multi-lab, multi-company project
based on Open Hardware and FOSS
with expanding user base
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Design goals

Scalability
Up to 2000 nodes.

Range
10 km fiber links.

Precision
1 ns time synchronization accuracy, 20 ps jitter.
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White Rabbit Synchronism
General architecture
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White Rabbit Synchronism
Phase tracking

Master Slave

Transmitter

Transmitter
Receiver

with CDR PLL

Receiver
with CDR PLL

DMTD
phase

detector

DMTD-based
phase shifting

PLL

reference clock uncompensated clock

recovered clock

recovered in-phase clock

f
m

Link
(up to 10 km single mode fiber)

clock loopback

Monitor phase of bounced-back clock continuously.
Phase-locked loop in the slave follows the phase changes
measured by the master.
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White Rabbit Switch

Central element of WR network.
Fully custom design, done from scratch at CERN.
10 1000Base-X ports, capable of driving 10+ km of SM fiber.
200 ps synchronization accuracy.
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Switch block diagram - main part

System FPGA handles all frame processing.
Implements PTP stack and management functions (SNMP,
Spanning Tree) inside a Linux embedded platform.
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WR in CERN’s Hardware Kit

FPGA

F
M

C
 c
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n

n
e

c
to

r

Memory

Power
WR port

ADC

DAC

Time-to-Digtal

Fine delay

Carrier boardFMCs

CERN’s FMC-based Hardware Kit:
FMCs (FPGA Mezzanine Cards) with ADCs, DACs, TDCs, fine
delays, digital I/O.
Carrier boards in PCI-Express and VME formats.
All carriers are equipped with a White Rabbit port.
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Distributed oscilloscope

WR NetworkFront-end cards Operator's PC

WR Switch WR Switch

WR Switch

Master

ADC

TDC

DDS

Analog signals

Triggers

Sampling clocks

Common clock in the entire network: no skew between ADCs.
Ability to sample with different clocks via Distributed DDS.
External triggers can be time tagged with a TDC and used to
reconstruct the original time base in the operator’s PC.
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Software for Diverse Equipment

We got ourselves a rather diverse hardware ecosyst...

eeehh, sorry,
zoo

Different species of hardware animals...
analog I/O (ADCs, DACs, waveform generators)
digital I/O
timing boards (FD, TDC)
many others

...of diverse breed
shiny brand new FMC boards
legacy COTS and in-house stuff

Some order has to be imposed in the zoo.
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Unifying Themes

Wishbone-based drivers
covering the FMC family of boards
designed around the internal Wishbone bus
introducing enumeration of device cores

zio: The Ultimate I/O
Linux kernel framework for I/O devices
oriented to high bandwidth applications
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The FMC family of boards

carriers in PCIe and VME form factors
simple mezzanines with electronics for ADCs, DACs, DIO and
endless other applications
circuitry in the mezzanine
FPGA application logic in the carrier
logic in the FPGA is organized as a set of IP cores interconnected
through an internal Wishbone bus
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A typical data acquisition application: carrier

SPEC carrier board (http://www.ohwr.org/projects/spec)
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A typical data acquisition application: mezzanine

FMC 100M4ch14b ADC
(http://www.ohwr.org/projects/fmc-adc-100m14b4cha)
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Block diagram of the FMC ADC application.
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logic (e.g. ADC
programming/setup).

Interrupt control.
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Drivers for the FMC family

Design concepts

modular structure that reflects the core structure of the firmware
one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

Nothing new under the FOSS sun
On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à la
PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel
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Architecture of the FMC drivers

Identify the carrier board and
initialize it.

Perform a basic identification
of the mezzanine(s) installed
in the FMC slot(s), and their
configured applications.

Load the application
firmware into the carrier
FPGA.

Register a Wishbone bus
with the kernel.

Enumerate the cores in that
firmware.

Register the devices those
cores implement and install
the drivers associated to
them.
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Linux Kernel I/O frameworks

In Linux staging area
Comedi
IIO

Drawbacks (for CERN applications)
interfaces are cumbersome (Comedi)
our use cases are far more complicated

Then zio comes
Alessandro Rubini and Federico Vaga, main developers
Designed ab initio for upstream integration
See under http://www.ohwr.org/projects/zio
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zio features

The zio framework is designed to flexibly support the following
aspects:

Digital and analog input and output.
One-shot and streaming (buffered) data acquisition or waveform
play.
Buffer management and timing for streaming conversion.
Resolution, sampling rate, timestamping.
Calibration, offset and gain.
Bit grouping in digital I/O.
Triggering of acquisition/output.
Support for DMA.
Potential to integrate in the main tree.
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zio concepts

zio abstractions

devices victims of our device drivers, contain channels
channels basic I/O units

channel sets group channels to be triggered (acquire, output)
simultaneously

buffers for input and output buffering, of course
triggers cause acquisitions to occur
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Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards

FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)

100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)

TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)

. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts

Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs

Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards

timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Next candidates for (zio) integration

And for mainstream integration as well...

CERN-developed OHWR FMC boards
FD (2012 Q1)
100Msps ADC (2012 Q2)
TDC (2012 Q2)
. . . and so forth.

CERN-developed drivers for good old beasts
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial boards
timing receivers, White Rabbit, etc.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 59 / 71



Let’s summarize

Accelerator control systems require managing a complex and
diverse zoo of hardware devices. . . a problem many people share
Open Hardware makes for a much more manageable design and
production way
It is proven to work in practice
Both for a big project like White Rabbit and for the myriad of
heterogeneous devices linked to it
The software side cannot simply live without the FOSS model
Especially the Linux kernel! Thanks for the device model and the
I/O frameworks
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Two-way delay compensation schemes

Master

time scale

Slave

time scale

t
1

t
4

t
2

t
3

Having the values of t1, t2, t3 and t4,
the slave can calculate the one-way
link delay:

δms = (t4−t1)−(t3−t2)
2
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Millisecond timing clients
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Millisecond timing
Example: Network Time Protocol (NTP)

Used in general-purpose computers
Works across the Internet.
Each client (slave) gets synchronized to one or more servers.

Cannot do better than 1 ms
Asymmetries in network, switches and routers.
Non-determinism due to OS scheduler (time tags done in SW).
Requires strong statistics artillery to average over many
measurements.
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Microsecond timing clients
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Microsecond timing clients
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Microsecond timing
Example: Precision Time Protocol (PTP, IEEE1588)

Acts on both of NTP’s shortcomings
Time-tagging can be done in HW.
Special PTP switches ensure no loss in precision.

Has a hard time doing better than 1µs
Typical nodes use a free-running oscillator.
Frequency offset (and drift) compensation generates extra traffic.
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Nanosecond and picosecond timing clients

SIMPLIFIED FIELD CONTROL SYSTEM

CAVITY

BEAM

K

RF

DETECTOR

RF

MODULATOR

ERROR

CORRECTION

AND

CONTROL

REFERENCE RF

SET POINTS

Desired

Field

Real

Field

LLCC
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Nanosecond and picosecond timing
Example: White Rabbit
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Nanosecond and picosecond timing
Phase tracking

Master Slave

Transmitter

Transmitter
Receiver

with CDR PLL

Receiver
with CDR PLL

DMTD
phase

detector

DMTD-based
phase shifting

PLL

reference clock uncompensated clock

recovered clock

recovered in-phase clock

f
m

Link
(up to 10 km single mode fiber)

clock loopback

Monitor phase of bounced-back clock continuously.
Phase-locked loop in the slave follows the phase changes
measured by the master.

Javier Serrano, David Cobas et al. (CERN) Diverse equipment at CERN FOSDEM 2012 69 / 71



Nanosecond and picosecond timing
Another example: neutrino oscillation experiments
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