

Battle for Wesnoth

● A turn-based strategy game
● On a hexagonal board
● Role playing game style elements
● Single player and multiplayer modes
● Runs on a variety of platforms
● Highly customizable and 'moddable'.

So what's special about it?

● A large developer and player community
● A mature project, but with active development

and many improvements
● High quality artwork: both graphics and music
● Very well-balanced by a tireless team of

playtesters
● Fun, unique gameplay

Technologies used

● Advanced C++, with some use of Boost
● The Simple Directmedia Layer (SDL) libraries:

SDL, SDL_net, SDL_ttf, SDL_image
● gettext for internationalization
● Python to allow scriptable AIs
● Otherwise, most of Wesnoth's technology is

“home grown”.

The Wesnoth community

● http://forum.wesnoth.org -- a web forum (phpbb)
● #wesnoth, #wesnoth-dev, #wesnoth-mp and

others on irc.freenode.net
● wesnoth-dev@gna.org -- developer mailing list
● http://bugs.wesnoth.org -- bug tracking system

http://forum.wesnoth.org/
mailto:wesnoth-dev@gna.org
http://bugs.wesnoth.org/

What's hard about making a FLOSS
game?

● There is very little 'direction'. There are many
ways one can take a game project.

● There is no 'ending'. A game project can be
improved indefinitely.

● A game requires mastery of many different
disciplines. Technical excellence, artistic
excellence, and game design all have to
converge.

How it all began
● In June, 2003, I developed a very simple hex war

game and released it as “Battle for Wesnoth 0.1”.
● All major gameplay features were already present in

this version.
● Francisco Munoz sent me some improved artwork for

the game.
● Further releases were made; a forum set up; a

community began forming.

The Wesnoth Engine
● ~90k non-blank lines of C++ code.
● Modern style of C++, using the STL, templates,

exceptions, and some parts of Boost. RAII is used
heavily; very few memory leaks.

● Minimal dependencies; we program many things
ourselves

● Includes an AI, WML parser, random map generator,
theme/widget engine, and support for all game logic.s

Problems with Wesnoth's Design

● SDL: little new development, slow to do many
things. However, OpenGL has been determined
not to be a reasonable alternative.

● Other SDL libraries (SDL_ttf, SDL_net) have
proved to have various stability and other
problems.

● Sometimes slow
● Memory hungry

Networking Wesnoth

● Not originally designed to be networked.
● Originally, saves could only take place at the

end of a scenario.
● Later, saves implemented as start-scenario +

deltas (“replay”)
● This allowed for replays of a game to be stored
● Also allowed sending deltas over the network to

implement network multiplayer

Networking Wesnoth (cont.)

● Very thin/dumb server that forwards data and
little more

● Allows a very efficient server that can service
many clients. No meta-server needed.

● Clients must have exactly the same version and
data.

● Cheating by modifying source code is very
easy.

Wesnoth Multiplayer

● A sub-community focused on multiplayer soon
formed.

● Multiplayer developers began concentrating on
tuning and playtesting the game more finely
than before.

● Six different factions, many maps, finely tuned
and balanced.

Wesnoth Markup Language (WML)

● An XML-like language which is used throughout
Wesnoth.

● Is used to create scenarios, campaigns, define
units, define display and theme settings, and as
the save game and network protocol format.

● Also supports a pre-processor to make things
easier.

● Has evolved greatly over time.

Wesnoth Map Editor

● Much of Wesnoth's code is reused to make a
map editor.

● Allows easily and advanced creation of maps.
● Doesn't support any WML. One must add units,

events, etc to a map oneself.

Wesnoth's AI

● Wesnoth is a complex problem for an AI to
solve: huge state space, incomplete
information, non-deterministic outcomes.

● There is a 'default' C++ AI, and support for
more AI's to be written in C++ or Python.

● All of the current AI's use simple heuristic based
approaches.

● Default AI is configurable.

Wesnoth's Artwork
● Wesnoth began with no artists at all.
● Made adding art as easy as possible to attract artists.
● Maintained a policy of “if someone does the art for this

feature, I will do the code”
● Many of Wesnoth's current artists taught themselves art

during development.
● Strong artists work with weaker artists.
● Artists misunderstanding or disliking the GPL and FLOSS

has been an ongoing problem.

Internationalization
● Originally there were no plans or design to

internationalize Wesnoth.
● Later, we added support for gettext.
● WML has internationalization support: any value that is

preceded by a “_” will be translatable.
● Now there is a large community of translators.
● There are now translations into over 30 languages,

including languages such as Latin and Esperanto.

Other Cool Features

● Wesnoth's community constantly produces cool
tools and features.

● Add-on Server
● stats.wesnoth.org (Rusty Russell)
● units.wesnoth.org
● phpbb forum extensions
● WML lint (Eric Raymond)

How to get involved...

● Participate on the Wesnoth forums and IRC
channel

● Find an area of interest and submit a patch
● Contributors of 2-3 useful patches are typically

granted SVN access
● Contribute to Wesnoth (or another Open Source

project) as part of Google's Summer of Code
(http://code.google.com/soc).

