Battle for Wesnoth

e A turn-based strategy game

On a hexagonal board

Role playing game style elements
Single player and multiplayer modes
Runs on a variety of platforms
Highly customizable and 'moddable’.



So what's special about it?

« Alarge developer and player community

A mature project, but with active development
and many improvements

« High quality artwork: both graphics and music

* Very well-balanced by a tireless team of
playtesters

 Fun, unique gameplay



Technologies used

« Advanced C++, with some use of Boost

 The Simple Directmedia Layer (SDL) libraries:
SDL, SDL net, SDL _ttf, SDL_image

 gettext for internationalization
* Python to allow scriptable Als

e Otherwise, most of Wesnoth's technology is
“home grown”.



The Wesnoth community

http://forum.wesnoth.org -- a web forum (phpbb)

#wesnoth, #wesnoth-dev, #wesnoth-mp and
others on irc.freenode.net

wesnoth-dev@gna.org -- developer mailing list
http://bugs.wesnoth.org -- bug tracking system


http://forum.wesnoth.org/
mailto:wesnoth-dev@gna.org
http://bugs.wesnoth.org/

What's hard about making a FLOSS
game?
* There is very little 'direction’. There are many
ways one can take a game project.

 There is no 'ending’. A game project can be
improved indefinitely.

* A game requires mastery of many different
disciplines. Technical excellence, artistic
excellence, and game design all have to
converge.



How it all began

In June, 2003, | developed a very simple hex war
game and released it as “Battle for Wesnoth 0.1".

All major gameplay features were already present in
this version.

Francisco Munoz sent me some improved artwork for
the game.

Further releases were made; a forum set up; a
community began forming.



The Wesnoth Engine

~90k non-blank lines of C++ code.

Modern style of C++, using the STL, templates,
exceptions, and some parts of Boost. RAIl is used
heavily; very few memory leaks.

Minimal dependencies; we program many things
ourselves

Includes an Al, WML parser, random map generator,
theme/widget engine, and support for all game logic.s



Problems with Wesnoth's Design

e SDL.: little new development, slow to do many
things. However, OpenGL has been determined
not to be a reasonable alternative.

o Other SDL libraries (SDL_ttf, SDL net) have
proved to have various stability and other
problems.

e Sometimes slow
 Memory hungry



Networking Wesnoth

* Not originally designed to be networked.

 Originally, saves could only take place at the
end of a scenario.

o Later, saves implemented as start-scenario +
deltas (“replay”)

e This a

e Also a

owed for replays of a game to be stored
owed sending deltas over the network to

Implement network multiplayer



Networking Wesnoth (cont.)

* Very thin/dumb server that forwards data and
little more

« Allows a very efficient server that can service
many clients. No meta-server needed.

* Clients must have exactly the same version and
data.

« Cheating by modifying source code is very
easy.



Wesnoth Multiplayer

* A sub-community focused on multiplayer soon
formed.

* Multiplayer developers began concentrating on
tuning and playtesting the game more finely
than before.

« Six different factions, many maps, finely tuned
and balanced.



Wesnoth Markup Language (WML)

« . An XML-like language which is used throughout
Wesnoth.

* |s.used to create scenarios, campaigns, define
units, define display and theme settings, and as
the save game and network protocol format.

» Also supports a pre-processor to make things
easier.

« Has evolved greatly over time.



Wesnoth Map Editor

e Much of Wesnoth's code is reused to make a
map editor.

« Allows easily and advanced creation of maps.

e Doesn't support any WML. One must add units,
events, etc to a map oneself.



Wesnoth's Al

* WWesnoth is a complex problem for an Al to
solve: huge state space, incomplete
Information, non-deterministic outcomes.

 There is a 'default’' C++ Al, and support for
more Al's to be written in C++ or Python.

 All of the current Al's use simple heuristic based
approaches.

e Default Al is configurable.



Wesnoth's Artwork

Wesnoth began with no artists at all.
Made adding art as easy as possible to attract artists.

Maintained a policy of “if someone does the art for this
feature, | will do the code”

Many of Wesnoth's current artists taught themselves art
during development.

Strong artists work with weaker artists.

Artists misunderstanding or disliking the GPL and FLOSS
has been an ongoing problem.



Internationalization

Originally there were no plans or design to
Internationalize WWesnoth.

Later, we added support for gettext.

WML has internationalization support: any value that is
preceded by a “ " will be translatable.

Now there is a large community of translators.

There are now translations into over 30 languages,
iIncluding languages such as Latin and Esperanto.



Other Cool Features

 WWesnoth's community constantly produces cool
tools and features.

« Add-on Server
 stats.wesnoth.org (Rusty Russell)
e units.wesnoth.org

* phpbb forum extensions

WML lint (Eric Raymond)



How to get involved...

e Participate on the Wesnoth forums and IRC
channel

 Find an area of interest and submit a patch

« Contributors of 2-3 useful patches are typically
granted SVN access

e Contribute to Wesnoth (or another Open Source
project) as part of Google's Summer of Code
(http://code.google.com/soc).



