

openQRM, pluggable virtualization
for modern data-centers

Fosdem 2008
A presentation by Matt Rechenburg

Agenda

➢ OpenQRM in short
➢ Pluggable architecture
➢ Virtualization layer in openQRM
➢ Details about the openQRM Virtualization-plugins
➢ Developing a Virtualization-plugin
➢ Time for questions and discussion

Project History

➢ Derived from a proven commercial product
➢ Open-source since beginning of 2006
➢ openQRM Project on Sourceforge.net
➢ Active development by the community

openQRM: Goals and Concepts
➢ Separation of different modules in the data-center

➢ Servers -> physical hardware
➢ Services -> Operation System + Applications
➢ Storage- and Network-devices

➢ Abstraction of modules via Virtual-environments

➢ Plug-able architecture, huge selection of plugins

➢ Automated mechanisms for enhanced monitoring, system-
management and rapid deployment

➢ Support for different operation systems and Virtualization types

Virtualization layer in openQRM

➢ Unifies the different Virtualization types

➢ Transparent support for migrating from physical
resources to virtual partitions from different types

➢ Server-images does not require any changes

Virtualization Host-management

➢ Not only a GUI for a single Virtualization Host

➢ Automated Host deployment

➢ Automatic installation of the Virtualization components
on the Host VE

➢ Cluster of shared Hosts (SSI)

➢ Load-balancing and scalability

Virtualization Partition-management
➢ Partitions created on behalf of Host-resource

➢ Partitions are just another type of resource

➢ openQRM maps partition commands to actions on the
Virtualization Host

➢ Administration of vm's just like physical servers

➢ Partitions can move easily from one Virtualization Host
to another

➢ Transparent resource management

The Xen plugin
➢ Automatic installation of the Xen VE via a resource boot-service

➢ Adding/removing/mapping of virtual network-interfaces

➢ Mapping of the virtual CPUs

➢ Increasing/decreasing memory consumption “on-the-fly”

➢ Pause/Unpause

➢ Handing over block-devices (FC/LVM)

➢ Live-migration

➢ Xen-console within the openQRM user-interface

➢ Supports NFS and Iscsi storage-servers

The Qemu plugin

➢ Automatic installation and pre-configuration of Qemu on
the Host VE via a resource boot-service

➢ Support for kqemu and KVM

➢ Adding/removing/mapping of virtual network-interfaces

➢ Increasing/decreasing memory consumption

➢ Supports NFS and Iscsi storage-servers

➢ Does not require special boot-image

The Linux-VServer plugin

➢ Automatic installation and pre-configuration of the
Linux-Vserver tools on the Host VE

➢ Adding/removing/mapping of virtual network-interfaces

➢ Increasing/decreasing memory consumption

➢ Supports NFS storage-servers

➢ Best for web-farms

The VMware plugin

➢ Provided and maintained by Qlusters

➢ Manages existing VMware-server

➢ Support VMware GSX and ESX

➢ based on VMware API

➢ Supports NFS, Iscsi and local-deployment

A web-hosting setup

An advanced setup

2 classes to implement
... for example the Xen-plugin

Namespace
main/code/java/com/qlusters/qrm/plugins/partitioning/xen/

➢ XenPartitionBridge.java
➢ Maps the vm-commands
➢ Runs vm-commands on behalf of the Virtualization Host

➢ XenMacAddressProvider.java
➢ Generates Mac-Addresses for partitions
➢ Mac-address namespace per technology

The XenPartitionBridge implementation

public class XenPartitionBridge extends BaseParitioning {
 private static XenPartitionBridge instance = new XenPartitionBridge();

 public void startFromOff(ComputeResourceData resource) {
 ComputeResourceData node = Finder.getComputeResourcesFinder()
 .getReadOnlyHostingResourceByPartition(resource);

 StartPartitionCommand spc = new StartPartitionCommand(node, resource);
 CommandsExecutor.executeNow(spc);
 }

}

How the StartPartitionCommand works

public class StartPartitionCommand extends XenCommand {
 private static final String startPartition = Prefs.getPrefs()
 .getString(
 StartPartitionCommand.class,
 "startPartition", xenControlScript + "start -m ${" + MAC + "}");

 protected StartPartitionCommand(ComputeResourceData node,
 ComputeResourceData partition) {
 super(node, partition);
 createCommand(partition, startPartition);
 }
}

... and the implementation of the XenMacAddressProvider

public class XenMacAddressProvider implements MacAddressProvider {
...
 private long getAddress(int vmId, byte forthByte) {
 ...
 long result = 0x000000L;
 result += (forthByte & 0xff) << 16;
 result += vmId & 0xffff;
 result += MAC_TEMPLATE;
 try {
 result = getAddress(vmId, ++forthByte);
 } catch (IllegalArgumentException e) {
 System.out.println("We have reached max forth byte");
 Collections.sort(macs);
 Long lastMac = (Long) macs.get(macs.size() - 1);
 result = lastMac.longValue() + 1;
 }
 macs.add(new Long(result));
 return result;
 }
...
}

Summary and Conclusion

➢ Open architecture / fully plug-able
➢ Conforms different Virtualization technologies

via partition-layer abstraction
➢ Transparent resource management
➢ Supports mainstream Virtualization vendors
➢ Plugin-development is made easy
➢

Future Roadmap

➢ Focus on Virtualization
➢ Create plugins for

➢ OpenVZ
➢ Virtualbox
➢ Virtuozzo

➢ Enhance Virtualization plugins actions

➢ Port to PHP !

 Your code and contribution is welcome !

openQRM on the internet

openQRM project

 http://sourceforge.net/projects/openqrm

m.rechenburg@t-online.de

Time for your questions

Many thanks and
have a great time
at Fosdem 2008!

