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Why can't I use GDB
to debug the Linux kernel?
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Why can't I use GDB to debug the 
kernel?

It is morally wrong
to use a debugger.

Use printk.
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Why can't I use GDB to debug the 
kernel?

Debuggers facilitate 
observation.



5

Why can't I use GDB to debug the 
kernel?

You need a second machine.
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What are tracepoints?
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GDB-based source-level debugging
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What are tracepoints?
GDB-based source-level debugging
Minimally intrusive
Can debug the kernel GDB itself is 
running under
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Breakpoints vs. Tracepoints

Breakpoints stop the program, while 
you inspect its state.
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Breakpoints vs. Tracepoints

Breakpoints stop the program, while 
you inspect its state.
Tracepoints pause the program, log 
information, and then continue.
In GDB, a selected log hit becomes 
“the current state of the program”.
You choose the information to log 
ahead of time.
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Demo #1
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How does it work?
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Tracepoint Implementation
GDB compiles source-language 
expressions to bytecode
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Tracepoint Bytecode
(gdb) maintenance agent file->f_dentry->d_iname
  0  reg 0
  3  zero_ext 32
  5  const8 8
  7  add
  8  trace_quick 4
 10  ref32
 11  const8 108
 13  add
 14  trace_quick 36
 16  pop
 17  end
(gdb) 
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Tracepoint probes

kprobes makes it easy to patch 
tracepoint handlers into code stream
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Tracepoint probes

kprobes makes it easy to patch 
tracepoint handlers into code stream
Passes registers to handler as a 
struct pt_regs

(mostly)



21

Tracepoint Hit Log
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Tracepoint Hit Log

In kernel memory
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Each entry records:



24

Tracepoint Hit Log

In kernel memory
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Tracepoint Hit Log
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Each entry records:

Which tracepoint was hit
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Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit
Register values
Contents of all memory touched by 
tracepoint's bytecode expressions
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Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit
Register values
Contents of all memory touched by 
tracepoint's bytecode expressions

SMP-safe
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Bad /proc interface

Essentially passes GDB remote 
protocol packets via write calls, 
responses via read calls on /proc/gdb-
tracepoints
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Bad /proc interface

Essentially passes GDB remote 
protocol packets via write calls, 
responses via read calls on /proc/gdb-
tracepoints
Can be controlled by shell scripts 
(Python!)
Ought to be sysfs/kobject-based
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Cute Hack #1

(Due to the inimitable
Michael Snyder)
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Cute Hack #1

Log holds raw memory, not 
expression results
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Cute Hack #1
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Cute Hack #1

Log holds raw memory, not 
expression results
Selecting a hit makes those regs and 
memory contents 'current' to GDB
So they can be reinterpreted in more 
helpful ways
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Demo #2
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Cute Hack #2

(Also due to the inimitable
Michael Snyder)
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Cute Hack #2

struct gtp_hit
{
  spinlock_t lock;
  int number;
  struct gtp_tracepoint *tracepoint;
  size_t entries_used;
  int error;
  struct pt_regs regs;
  size_t num_bytes;
  unsigned char bytes[];
};
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Cute Hack #2

One tracepoint hit structure (with tail) 
holds all the memory logged for a 
given tracepoint hit.
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Cute Hack #2

One tracepoint hit structure (with tail) 
 holds all the memory logged for a 
given tracepoint hit.
A hit may hold any number of blocks 
of memory, each possibly from a 
different address, and of a different 
length.
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Cute Hack #2

struct gtp_hit
{
  spinlock_t lock;
  int number;
  struct gtp_tracepoint *tracepoint;
  size_t entries_used;
  int error;
  struct pt_regs regs;
  size_t num_bytes;
  unsigned char bytes[];
};
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Cute Hack #2
When we log a hit, we log all the 
bytes it refers to, traced or not, in the 
order the interpreter requests them.
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Cute Hack #2
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Cute Hack #2
When we log a hit, we log all the 
bytes it refers to, traced or not, in the 
order the interpreter requests them.
When we query a hit, we re-evaluate 
the expression, handing out the next 
block of bytes as the interpreter 
requests them.
The two interpreters are in sync, so 
they ask for the same blocks.
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Credits
Michael Snyder
Nicholas McGuire
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Thank you!

http://www.red-bean.com/jimb


