
1

GDB Tracepoints
for the Linux kernel

Jim Blandy
CodeSourcery, LLC

2

Why can't I use GDB
to debug the Linux kernel?

3

Why can't I use GDB to debug the
kernel?

It is morally wrong
to use a debugger.

Use printk.

4

Why can't I use GDB to debug the
kernel?

Debuggers facilitate
observation.

5

Why can't I use GDB to debug the
kernel?

You need a second machine.

6

What are tracepoints?

7

What are tracepoints?
GDB-based source-level debugging

8

What are tracepoints?
GDB-based source-level debugging
Minimally intrusive

9

What are tracepoints?
GDB-based source-level debugging
Minimally intrusive
Can debug the kernel GDB itself is
running under

10

Breakpoints vs. Tracepoints

Breakpoints stop the program, while
you inspect its state.

11

Breakpoints vs. Tracepoints

Breakpoints stop the program, while
you inspect its state.
Tracepoints pause the program, log
information, and then continue.

12

Breakpoints vs. Tracepoints

Breakpoints stop the program, while
you inspect its state.
Tracepoints pause the program, log
information, and then continue.
In GDB, a selected log hit becomes
“the current state of the program”.

13

Breakpoints vs. Tracepoints

Breakpoints stop the program, while
you inspect its state.
Tracepoints pause the program, log
information, and then continue.
In GDB, a selected log hit becomes
“the current state of the program”.
You choose the information to log
ahead of time.

14

Demo #1

15

How does it work?

16

Tracepoint Implementation
GDB compiles source-language
expressions to bytecode

17

Tracepoint Bytecode
(gdb) maintenance agent file->f_dentry->d_iname
 0 reg 0
 3 zero_ext 32
 5 const8 8
 7 add
 8 trace_quick 4
 10 ref32
 11 const8 108
 13 add
 14 trace_quick 36
 16 pop
 17 end
(gdb)

18

Tracepoint probes

kprobes makes it easy to patch
tracepoint handlers into code stream

19

Tracepoint probes

kprobes makes it easy to patch
tracepoint handlers into code stream
Passes registers to handler as a
struct pt_regs

20

Tracepoint probes

kprobes makes it easy to patch
tracepoint handlers into code stream
Passes registers to handler as a
struct pt_regs

(mostly)

21

Tracepoint Hit Log

22

Tracepoint Hit Log

In kernel memory

23

Tracepoint Hit Log

In kernel memory
Each entry records:

24

Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit

25

Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit
Register values

26

Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit
Register values
Contents of all memory touched by
tracepoint's bytecode expressions

27

Tracepoint Hit Log

In kernel memory
Each entry records:

Which tracepoint was hit
Register values
Contents of all memory touched by
tracepoint's bytecode expressions

SMP-safe

28

Bad /proc interface

Essentially passes GDB remote
protocol packets via write calls,
responses via read calls on /proc/gdb-
tracepoints

29

Bad /proc interface

Essentially passes GDB remote
protocol packets via write calls,
responses via read calls on /proc/gdb-
tracepoints
Can be controlled by shell scripts
(Python!)

30

Bad /proc interface

Essentially passes GDB remote
protocol packets via write calls,
responses via read calls on /proc/gdb-
tracepoints
Can be controlled by shell scripts
(Python!)
Ought to be sysfs/kobject-based

31

Cute Hack #1

(Due to the inimitable
Michael Snyder)

32

Cute Hack #1

Log holds raw memory, not
expression results

33

Cute Hack #1

Log holds raw memory, not
expression results
Selecting a hit makes those regs and
memory contents 'current' to GDB

34

Cute Hack #1

Log holds raw memory, not
expression results
Selecting a hit makes those regs and
memory contents 'current' to GDB
So they can be reinterpreted in more
helpful ways

35

Demo #2

36

Cute Hack #2

(Also due to the inimitable
Michael Snyder)

37

Cute Hack #2

struct gtp_hit
{
 spinlock_t lock;
 int number;
 struct gtp_tracepoint *tracepoint;
 size_t entries_used;
 int error;
 struct pt_regs regs;
 size_t num_bytes;
 unsigned char bytes[];
};

38

Cute Hack #2

One tracepoint hit structure (with tail)
holds all the memory logged for a
given tracepoint hit.

39

Cute Hack #2

One tracepoint hit structure (with tail)
 holds all the memory logged for a
given tracepoint hit.
A hit may hold any number of blocks
of memory, each possibly from a
different address, and of a different
length.

40

Cute Hack #2

struct gtp_hit
{
 spinlock_t lock;
 int number;
 struct gtp_tracepoint *tracepoint;
 size_t entries_used;
 int error;
 struct pt_regs regs;
 size_t num_bytes;
 unsigned char bytes[];
};

41

Cute Hack #2
When we log a hit, we log all the
bytes it refers to, traced or not, in the
order the interpreter requests them.

42

Cute Hack #2
When we log a hit, we log all the
bytes it refers to, traced or not, in the
order the interpreter requests them.
When we query a hit, we re-evaluate
the expression, handing out the next
block of bytes as the interpreter
requests them.

43

Cute Hack #2
When we log a hit, we log all the
bytes it refers to, traced or not, in the
order the interpreter requests them.
When we query a hit, we re-evaluate
the expression, handing out the next
block of bytes as the interpreter
requests them.
The two interpreters are in sync, so
they ask for the same blocks.

44

Credits
Michael Snyder
Nicholas McGuire

45

Thank you!

http://www.red-bean.com/jimb

