
Implementation of linux SH2

Yoshinori Sato
<ysato@users.sourceforge.jp>

2

Contents

 Current status
 A policy
 Implementation

 Exception handling
 Peripheral support

 Future working

3

Current status

 It was done merge with linux-2.6.20-
rc1

 Latest version is git repository of
linux-sh

 The part which required prepared it as
SH2 architecture correspondence
minimally

 However, support of individual CPU /
target is a future problem

A policy

 It works at once.
 I do merge in linux-sh.
 I use code for existing sh3/4
usefully.

 I dismiss code of old sh2 support.

Implementation

 A difference of SH2(A) and SH3/4
 Exception handling
 Handling
 exception factor
 Privileged mode
 Register bank
 MMU
 Address space (only SH2A)

 I become a problem when I let linux
kernel work on SH2(A).

Exception handling of SH3/4

1.Save Registers (PC,SR,SP)
2.Enter privileged mode
3.SR update
4.Jump to exception handler

Exception handling of SH2

1.Load exception handler address from
vector table

2.Save SR to stack
3.Save PC to stack
4.Jump to exception handler

Procedure to be completely different
from SH3/4

Exception handling of SH2

 Exception handling of SH2 is different
from SH3/4.

 That purpose cannot make a common use
of SH3/4 with exception handling.

 And cannot support request of generic
interrupt handler.

Exception handling of SH2

 This problem is settled by converting
SH3/4 into with an exception entry in
the same way.

 It is substantially forcible
implementation.

Exception handling of SH2

 Convert an vector address to number
 Execute the following code with all
exception vector.

exception_entry:
mov.l r0,@-sp
mov #no,r0 ! <- set number here
bra exception_trampoline
and #0xff,r0

Exception handling of SH2

 Can set exception number in r0
therefore.

 I have only wordy implementation on by
a restriction of instruction set.

Exception handling of SH2

 Generation of exception stack frame
 I convert it into the stack frame
which is compatible with SH3/4 with
this stage.

SR

PC

R0

R1

TRA

MACL
MACH

SR

PR
PC

R15

R14
R13

R0
R1

Exception handling of SH2

 A factor of an exception
 Identification number is assigned to
SH3/4 by an exception / trap /
interrupt independently.

 (EXPEVT/TRA/INTEVT)
 However, I do not become independent
in SH2.

Exception handling of SH2

 I classed a factor and did an assign
as follows

0x00 - 0x1f exception
0x20 - 0x3f trap (system call)
0x40 - 0xff interrupt

System call

 I assigned system call from 0x20 to
0x2f of trap in SH2.

 However, use 0x10 to 0x1f in SH3/4.
 I examined that I assigned the same
number.

 Because there were a few advantages by
supporting, I gave priority to
easiness of implementation.

System call

 I lose binary compatible nature by
this.

 Because I cannot work an usual ELF
binary in nommu, this thinks that
there is not it in a problem.

 I make it source compatible with
SYSCALL macro.

Privileged mode

 There is not such a features in SH2.
 I implement similar features with
software with that purpose.

 I use mode judgment flag and do a mode
judgment / conversion in exception
appearance.

Privileged mode

 I thought about a method to judge in
address of PC.

 Because a judgment of kernel module
became complicated, I did not adopt
it.

Privileged mode

 ENTRY(exception_handler)

 mov.l r2,@-sp

 mov.l r3,@-sp

 mov r0,r1

 cli

 mov.l $cpu_mode,r2 <- Privilege / User Flag

 mov.l @r2,r0

 mov.l @(5*4,r15),r3 <- original SR

 shll2 r3

 rotl r0

 rotl r0 <- mode flag to T

 rotcr r3

 shlr r3 <- Privilege / User Flag to original SR

 shlr r0

 bt/s 1f

 mov.l r3,@(5*4,r15)

Register bank

 As for SH3/4, R0-R7 becomes bank
structure for privileged mode.

 Bank register is not prepared in SH2.
 (The thing that register bank of SH2A
is wrong.)

 Because there is
config(CONFIG_SR_RB=n) which I do not
use bank for in linux-sh, I use it.

 Because not complete, I did some
revisions.

MMU

 MMU is not supported in SH2.
 Because the implementation that does
not use MMU for linux-sh already is
prepared, I use it.

 Because not complete, I did some
revisions.

Address space

 SH2A is different from SH3/4 in
definitions of address space.

 I let you be equivalent as follows.

P0

P1
P2 (Uncached)

P3
P4 (I/O)

(Cached)

I/O

Cached

Uncached

0x00000000

0x80000000

0xFFFFFFFF

SH3/4 SH2A

Peripheral support

I use one driver already.
Because some peripheral was material
different from SH3/4

I made those driver anew.
 Interval timer
 Interrupt controler
 ...

Future working

 Cleanup and optimization of code
 Stage to work at once completes
 Don't use enhanced function of SH2A
 It supports more targets

 Thanks

 Paul Mundt
 Ishiwatari-san
 Munakata-san

Any Questions?

Because I am weak in English,

please talk slowly _(mm)_

