mMontavista

XIP: the past, the present... the future?

Vitaly Wool,
Lead Engineer, MontaVista ODC
FOSDEM 2007

What the heck XIP is? montavista-

XIP = eXecute In Place
¢ The code is being executed from non-volatile storage

¢ Requires linear read access

=« Effectively that means NOR flash is required

XIP types

¢ Firmware (bootloader) XIP
¢ Kernel XIP

¢ Application XIP

Architectures
¢ Only ARM currently
¢ MIPS work ongoing
¢+ Makes no sense for most PowerPC- and x86-based SoCs

XIP: first steps into... montavista

XIP is not directly related to Linux
¢ Bootloaders are often XIP

¢ You're welcome to XIP whatever :)

Firmware: something should be XIP

¢ Once the hardware is powered, the control is passed to a non-volatile
storage

= Either the firmware is a complete XIP

= Or it initializes RAM, loads the main bootloader and runs it

XIP application

¢ Requirements
+ Storage that is linear on read
— NOR flash
— RAM (yes, that makes sense)
* |mplies uncompressed XIP file storage
- Executable code stored consequently
— Only read-only filesystem can guarantee that
— MontaVista has XIP support for cramfs
— Work on squashfs XIP support is in alpha stage
¢ QObjectives
* Decreases the RAM usage

- Decreases the time-to-start parameter

montavista

XIP application: how it works montavista

/ N

— HOWTO
* Specify the executable files for XIP

o s % yes Use Linear

during the cramfs filesystem creation XIP fops
* Usually these files are distinguished ~ o
by a specific flag
. i - / ™
/sbin/init is usually a good candidate Use common
no
+ read-only
. fops)

— NB: The gain depends on NOR flash speed vs RAM speed

XIP kernel montavista

NB: The most interesting case

¢ Requirements
* Storage linear on read
¢ Objectives
* Decreases the “time to splashcreen” value
» Decreases the overall boot time
- Decreases the RAM usage

- Decreases the power consumption

MTD/XIP

¢ The code can't be executed when a flash is not in array mode
- Some MTD bits are copied to ram (along with data sections)

XIP kernel: how it works montavista-

¢ Bootloader gets control

Initializes peripherals and
RAM

* Runs xiplmage

¢ Xiplmage gets control

* copies data sections to
RAM

* Proceeds just as a
common kernel

¢ NB: modules will be
loaded to memory

Summarizing... montavista:

XIP pros
¢ Less RAM consumption
¢ |ess power consumption
¢ Shorter time-to-splashscreen
¢ Shorter overall time-to-boot

XIP cons
¢ Needs NOR flash which is expensive
¢ Takes a lot of NOR flash space
Code can not be stored compressed

¢ Possible execution performance degradation
The RAM frequency is usually a lot higher than NOR flash’s

...and timing values are also less

XIP on ARM920@180 MHz montavistar

8000 -
7000 -
6000 -
5000 -
4000 - O zimage
3000+ HImage
2000
1000 T

~

O xiplmage

size, kb time to
boot,
ms

¢ 180-MHz ARM920EJS AT91RM9200-based custom board
¢ Reported by Marc Pignat

XIP on ARM920@180 Mhz: what's wrong? montavistar

¢ Too big a kernel

= XIP kernel should be minimalistic, unless you're concerned only with RAM
usage

* Modules will reside and RAM and be working faster
¢ Slow NOR flash

* Planing to heavily use XIP, you should make sure the NOR flash
performance doesn't slow dramatically things down

Picture

censored

10

Hardware objectives montavistar

* NAND flashes get cheaper and bigger

- HW vendors started getting rid of NOR flash in the design
¢ Higher CPU and RAM speeds

* The degradation in execution speed for XIP grows

* The boot time decreases just extensively

- XIP needs really fine selection of built-in drivers vs modules
¢ So... s there a future for XIP?

* Expensive NOR
flash

¢ Performance
degradation

11

XIP improved: partial compression

¢ Traditional XIP image (uncompressed)
* Consumes a lot of NOR flash space

= Some sections of XIP image are anyway copied to RAM (data sections)
¢ Partially compressed XIP image

* Any of the data sections can be stored compressed

* Configurability

* Flexibility to choose between space consumption and speed

montavista

12

XIP/compressed on ARM926@108 MHz montavistar

1200

1000

O zlmage

800

O xiplmage with max
applicable sections

6007 compression
i B xiplmage with
400 reasonable

compression

20077 @ xiplmage w/o
sections
0+ compression
size, kb tineto
boot,ms

¢ 108-MHz ARM926EJS Integrator-like board with 4M NOR

13

XIP improved: only XIP .init

¢ Traditional XIP image
= All the code is executed directly from NOR flash
* |t causes performance degradation

+ But saves time on first stage of boot
¢ What if

= Start executing from NOR and then continue from RAM?
¢ XIP .init

= Start kernel thread copying kernel code to RAM

+ Run .init code

montavista

14

XIP improved: separate sections

¢ Traditional XIP image
* All the sections are in one image

* Not a rational way to consume expensive NOR flash!

¢ For each of the two latter mods, what if store sections targeted for
RAM separately

* NAND or ATA is an ideal place
= Especially when the device is DMA-able

* Almost no additional CPU usage

montavista

15

MIPS XIP montavistar

¢ Traditional XIP approach
* At the beta stage
* |mplemented by Konstantin Baidarov and Vitaly Wool
* Verified mostly on Alchemy board
¢ Test board configuration
* 400 MHz CPU Alchemy board
* 32 MB NOR flash
* 64 MB RAM
= Very slow NOR flash (approx. 20 times slower on read than RAM)
¢ Main results
= Wow, it works ©

* The performance degradation is crucial @

16

MIPS XIP: Alchemy board

XIP on Alchemy board

4000
3500 —
3000 —
= ulmage
2500 — (compressed)
B Image
2000 — |] xiplmage
|| xiplmage/compress
1500 — — ed
1000 —
500 —
0

boot time, ms image size, kb
¢ Performance degradation for XIP case is dramatic...
¢ But that's due to the NOR flash having read speed 17x slower than RAM

montavista

17

Unexpected XIP: in a ramdisk

What if

¢ The ramdisk is read-only filesystem-based

¢ ...which is XIP-able

¢ And we mark an application as XIP?
This app

* Will start faster

* Will not consume additional RAM

¢ Will make the Ramdisk size bigger

Useful for...

* /sbin/init or any other init code

montavista

18

Conclusions

¢ Think over hardware design

* Review smartly the requirements
* ANOR flash? A NAND? An ATA disk?
= Try to consider as many variants as possible at prototyping stage

¢ Think over software design
* Do you need XIP at all?
— review requirements

— remember XIP drawbacks
* NOR flash should be consumed basically with only XIP-able stuff

— consider the optimizations covered in this talk

montavista

19

