
Page 1 of 18

Trends in Linux Kernel Development

Andrew Morton
<akpm@linux-foundation.org>

<akpm@google.com>
FOSDEM 2007
February 2007

Page 2 of 18

Looking Forward

● What features are being merged into the kernel?
● Who is developing these features, and why?
● The role of professional developers
● The importance of private developers, and how

individuals can contribute.

Page 3 of 18

Types of systems which use Linux

● Servers (and other large machines)
– database, web, file
– Scientific computing
– Most funding is in this area: hardware companies, software

companies whose customers use Linux
● Desktop

– Less important to companies than the server
– But more important to the developers and to their most

immediate users
● Consumer

– Often “small PCs”: DVR, PS3, instrument control, etc
– Funding for kernel work is lower, affected by the

“embedded problem”

Page 4 of 18

Types of systems which use Linux (cont'd)

● Embedded
– Smallest devices: cellphones, PDAs, network gear, etc.
– Usually non-x86, often no-MMU. Diskless.
– There is relatively little funding for embedded development

in Linux.

Page 5 of 18

Why companies fund Linux development

● Three main situations
– Hardware vendors

● sell hardware on which their customers wish to run Linux
– Software vendors

● sell software and services to customers who run Linux
– Device manufacturers

● make complete products which include Linux
● Hardware and software vendors' customers expect to

upgrade their kernel versions
– It turns out that the best way in which to provide features to

these customers is via the upstream kernel
– This logic is the source of much of the funding for kernel

development
● Some device manufacturers also have upgrade plans,

hence they will fund kernel.org development

Page 6 of 18

The “embedded problem”

● Unlike servers and desktop, most embedded devices
use a single kernel version for the whole product life
– Pick a kernel, customise it, ship

● No kernel upgrade is planned, so there is little
motivation to merge customisations into upstream

● Timelines and budgets are tight in embedded
● So there is little involvement in kernel.org development

from embedded developers
● There is some involvement, but often from hardware

companies and software/service providers (again)
● Despite all this, we do care about embedded and we

work to improve kernel support for it

Page 7 of 18

Technology walkthrough

● What is happening now?
● What is likely to happen soon?
● Who is doing it?
● Why are they doing it?
● There are always surprises

Page 8 of 18

Technologies: server

● Infiniband
● Network protocols, congestion management, etc
● SATA/SCSI evolution
● NUMA evolution
● Virtualisation (KVM, VMWare, lguest, Xen)
● Containerisation
● Resource management
● kexec and kdump
● kprobes and systemtap
● ext4

Page 9 of 18

Technologies: desktop

● Hotpluggability: devices, CPUs, nodes, memory
● Ongoing power management work
● Neverending stream of framebuffer drivers
● Direct-rendering drivers
● Much work ongoing with input, sound, USB, 1394

drivers
● Improvements to memory management, interactivity

Page 10 of 18

Technologies: consumer/embedded

● Much activity in DVB/Video4Linux
● Dynamic ticks, hrtimers (needed by OLPC)
● Ongoing footprint reduction

– More fine-grained configurability
● Improving NoMMU support
● New architectures (FRV, avr32, blackfin)
● OMAP, SPI
● More features will be merged from Ingo's -rt tree

Page 11 of 18

Instrumentation

● Ongoing need to expose more information about kernel
operation for debugging and tuning
– Probably we're not doing enough of this

● Per-task statistics (taskstats): improved task accounting
● Per-task IO accounting
● Per-process memory footprint monitoring
● Perfmon

– Access to CPU performance counters
– More for userspace than kernel
– Progress is slow

Page 12 of 18

Kernel core

● kevent: efficient unified event delivery
● utrace: rewrite of the ptrace support code
● syslets/fibrils: asynchronous system calls

– will improve (and obsolete) the existing partial AIO support

Page 13 of 18

Debuggability

● Kernel development is highly decentralised
– Developers and testers are widely separated
– Hence Linux needs exceptional remote-debugging ability

● A lot of self-checking code is already in there
● The locking dependency checker was recently merged
● Fault-injection framework was recently merged
● New debugging features are readily accepted
● Maybe one day we'll merge a kernel debugger (I prefer

kgdb)
– But a debugger is for local developers, not for remote

debugging

Page 14 of 18

Cleanups

● We merge a lot of cleanup patches
– Code refactoring
– Whitespace fixes
– Replacement infrastructure (eg, mutexes, RCU)
– API changes (eg: timers, workqueues, PCI API)

● Followup patches to fully migrate to the new API
● Lots of ongoing churn, and some risk
● But we believe it is important

– We expect the codebase to be actively developed and
maintained for decades to come

– Improvement to the consistency and overall
understandability reduces maintenance cost in the long term

● The kernel has become a lot better as a result

Page 15 of 18

Surprises

● Interesting features are regularly submitted without
prior announcements
– eg: lockdep, kevent, KVM, async-syscalls

● The quality of these submissions is often high
● They often get merged quickly

Page 16 of 18

The role of private contributors

● Probably most kernel work is performed by
professionals

● Private contributors are important, especially in
desktop-related development

● It is often hard to know if a contributor is professional
or private
– If they're good, they don't stay private for long

Page 17 of 18

The role of testers

● An area where private contributors dominate
● Many testers are individuals who simply want to help

the effort
● External testers are a key part of the whole kernel effort

– A key reason is that the kernel must run on thousands of
different types of machines – more than the developers have
access to

● The whole kernel project would fail without our testers
● Testing is an easy and valuable way to contribute

Page 18 of 18

How to contribute by testing

● Grab latest -linus snapshot, use it in normal daily
activities
– Once per week or once per month
– Fedora, openSUSE and probably others provide kernel

snapshot packages. Using these is OK.
● Report any problems

– If they're recent regressions, email is appropriate
● Try to Cc the developer, and the appropriate list.
● Also Cc linux-kernel so I get to see the report

– If it's a longer-term bug, use bugzilla.kernel.org
● If possible, be prepared to help diagnose the bug
● Using git-bisect to identify the buggy patch is ideal

